Supercritical Fluid Solvents

Zachary Evenhouse

Carlye Longtin

Shannon McCawley

Overview

What is a Supercritical Fluid?

Organic vs. Supercritical Fluids

Supercritical CO₂

Supercritical H₂O

Conclusions

What are Supercritical Fluids?

Fluid at a temperature and pressure above the critical point

Evolution of a Supercritical Fluid

<u>https://www.youtube.com/watch?v=GEr3NxsPT</u> OA

Organic Solvents

Traditionally organic solvents used

Industries:
Chemicals
Pharmaceuticals
Disposal of hazardous chemicals
Not environmentally friendly:
Toxic, flammable, pollutants

Supercritical Solvents

- Environmentally Benign
 - Most common- CO₂ and H₂O
- Easily recycled
- High selectivity

Tunability
 Density, viscosity, diffusivity

What's the Demand?

- Demand stems from rising standards in the food and drug industries.
- Extraction with SCF's can often yield upwards of 90% pure product

Higher market values

- Traditional extractions use toxic organic solvents like chloroform, dichloromethane, and ethyl acetate
 - scCO₂ is completely non-toxic and environmentally benign
 - ightarrow scCO₂ is also 100% recoverable and recyclable

Supercritical CO₂ in Food Technology

Supercritical CO₂ is used in the extraction of oils, terpenes, aromatics, natural colorants, and recently cholesterol. Common extracts:

Extraction Basic Principles

- Solvent is pressurized
 Sample introduced to extractor
 Solvent flows through sample
 Waste (solids) discarded
 Flow-through
 - captured
- Solvent recycled

Modifier Chemical properties

So why isn't scCO₂ in mass use?

- Only high-cost, low-volume reaction tanks exist
- No financial incentive
 - Coffee and pharmaceutical industries are the only large markets
- scCO₂ extraction is only useful on things with relatively low molecular weights
 - Not practical for use in industrial polymerization reactions
 - Co-solvents such as ethanol are sometimes necessary with higher MW compounds, which pose their own green issues

Supercritical Water (scW)

Temperature: 380-700 C Pressure: 25-40 MPa Potential use in several fields Conversion & pretreatment of biomass Supercritical oxidation Organic and inorganic chemistry Energy transfer medium (nuclear & geothermal) Serious energy and corrosion challenges with its use

Conversion of Biomass

- Main goal of SCW usage
- SCW gasification of biomass

- Used with wet biomass (>80% water weight)
- Reaction occurs by forcing biomass slurry into supercritical state
- Reaction creates syn-gas
- At 400° C methane is main product
- At 650° C hydrogen is main product
- Gaseous products can be tuned by pressure and temperature
- CO₂ dissolves in SCW, only hydrogen and methane collected gases

VERENA Plant in Karlsruhe, Germany

Biomass turned into Reactor Water slurry 35 /. Flue gas Product gas Tmax 700℃ Preheater Preheated to near CO2-H₂ CH₄ Biomass scrubber 200 bar critical conditions T < 380°C Flue gas Biomass Heat excycle Feed into nickel alloy changer split reac/tor Brine \ Cooling removal water Pressure and Educt Lean gas HP-pump temperature increase, Phase separation Cooler Pressure release SCWG occurs Aqueous phase 350 bar Cutting-H₂ & methane milling collected Separation system Feed system Reaction system FIGURE 5.1 Schematics of the VERENA demonstration plant. Adapted with permission from Ref. [9]. Depressurized & CO₂

vented

scW Biomass Pretreatment

- Lignin in plant material prevents enzymatic attack
 - Hydroxyaromatic polymer
 - Cellulose contains 10-25% ligning
 - Prevents fermentation into ethanol
- scW pretreatment can be a solution
 - Hydrolyzes polymeric lignin with CO₂ as acid catalyst
 - Under mild scW conditions (400 C and 25 MPa)
- After scW pretreatment the biomass had a much higher conversion to ethanol

Supercritical Water Oxidation

- Used to destroy hazardous materials
- Oxidation occurs in homogenous phase
 - Extremely fast
 - Near complete oxidation

- Environmentally friendly/neutral products
- Process is self-sustaining with respect to energy
 - Oxidation is exothermic
 - Heat generated is enough to meet energy requirements
 - Excess heat energy available for power generation

SCWO Process

Four primary steps Feed preparation Reaction Salt separation Heat recovery Dxygen source Air Liquid O₂ Hydrogen Peroxide

FIGURE 5.2 Schematics of an SCWO plant. Adapted with permission from Ref. [36].

Conclusions

Drawbacks

Potential extreme corrosion problems (scW)
 Reactors made of exotic alloys

- Energy intensive
- Must be run as batch process
- Cannot be used with high MW substances
 - Thermal degradation
- scW cannot be used in pharmaceuticals

Conclusions cont.

Benefits

- Unique properties
- Oxidize hazardous chemicals (scW)
- No catalyst for H₂ production from biomass (scW)
- Little to no organic waste
- Recyclable
- Fast diffusion, low viscosity
- Environmentally benign
- Less separations
- Large availability

Sources

- Background Info Sources:
 - <u>http://pubs.acs.org/doi/pdf/10.1021/es00104a716</u>
 - http://eprints.usm.my/8927/1/DEVELOPMENT OF IDENTIFICATION TECHNIQUE BY FTIR-
 - PCA_FOR_SUPERCRITICALLY_EXTRACTED_METABOLITES_FROM_PARKIA_SPECIOSA_%28HASSK%29_SEEDS.pdf
 - <u>http://www3.nd.edu/~enviro/supercritical.html</u>

scW Sources:

- Data and processes: <u>http://onlinelibrary.wiley.com.lib-ezproxy.tamu.edu:2048/doi/10.1002/9781118310250.ch5/pdf</u>
- Biomass pic: <u>https://jeff-tester.cbe.cornell.edu/images/research/conversion.jpg</u>
- Oxidation pic: <u>http://scfi.eu/wp-content/uploads/2010/05/d.jpg</u>
- Lignin pic: http://www.lignoworks.ca/sites/default/files/what-is-lignin.png

scCO₂ Sources:

- Food Technology: http://fst.sagepub.com.lib-ezproxy.tamu.edu:2048/content/8/5/269.full.pdf+html
- Carotene Extraction: http://pubs.acs.org.lib-ezproxy.tamu.edu:2048/doi/pdf/10.1021/jf000311t
- Decaffeinating Coffee: <u>http://antoine.frostburg.edu/chem/senese/101/consumer/faq/decaffeinating-coffee.shtml</u>
- Extraction Apparatus: <u>http://pubs.rsc.org/en/content/articlehtml/2001/an/b008243k</u>